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Nonlinear waves on the interface of two incompressible inviscid fluids of different 
densities and arbitrary surface tension are analysed using the method of multiple 
scales. Third-order equations are presented for the space and time variation of 
the wavenumber, frequency, amplitude and phase of stable waves. A third-order 
expansion is also given for wavenumbers near the linear neutrally stable wave- 
numbers. A second-order expansion is presented for wavenumbers near the 
second-harmonic resonant wavenumber, for which the fundamental and its 
second harmonic have the same phase velocity. This expansion shows that this 
resonance does not lead to instabilities. 

1. Introduction 
In this paper, we investigate the nonlinear stability of the interface of two 

semi-infinite inviscid incompressible fluids moving with uniform velocities 
parallel to their interface. In  the absence of convective, shear, and body force 
instabilities, the principal instability mechanism is the Kelvin-Helmholtz 
mechanism (cf. Chandrasekhar 1961; Chang & Russell 1965). 

The essence of the Kelvin-Helmholtz mechanism, which is the subject of this 
paper, is that the pressure perturbation does work on the interface. The amount 
of work done depends on the magnitude and phase of the pressure with respect 
to the wave. When the relative motion of the two fluids is subsonic, the linear 
pressure perturbation is 180' out of phase with the surface wave, so that it 
pushes down at the troughs and sucks at the crests of the waves, thereby feeding 
energy to the disturbance in the interface. In  the supersonic case, the linear 
pressure perturbation is in phase with the wave slope, thus transferring the 
maximum energy to the interface. 

As the amplitude increases, the subsonic case becomes much more unstable 
than the supersonic case according to  the nonlinear theory of Nayfeh & Saric 
(1971). For the case of an inviscid gas flowing parallel to a thin viscous liquid 
layer they found that, for a subsonic gas, stable linear modes continue to be 
stable while unstable linear modes continue to be unstable but with slower growth 
rates. For a supersonic gas, on the other hand, they found that linear modes do 
not grow indefinitely but become periodic waves. These nonlinear results are 
qualitatively confirmed by the experiments of Gater & L'Ecuyer (1969), Saric & 
Marshall (1971) and Gold, Otis & Schlier (1971). 
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FIGURE 1. Schematic diagram of the flow. 

Drazin (1970), motivated by the experiments of Thorpe (1968, 1969), con- 
ducted a nonlinear stability analysis of the interface of two incompressible 
inviscid fluids moving with uniform velocities parallel to their interface for the 
cases of (a )  zero surface tension and ( b )  equal densities. He found that in both 
cases unstable linear modes correspond to finite amplitude periodic waves. Since 
Drazin predicted periodic waves in his case and Nayfeh & Saric predicted unstable 
waves in the subsonic case, we conclude that the stabilizing effect of the nonlinear 
motion depends on the density ratio and the value of the surface tension. One of 
the purposes of the present paper is to exhibit the transition from instability to 
stability as the density ratio increases to unity or the surface tension decreases 
to zero. A nonlinear stability analysis is conducted using the method of multiple 
scales (Nayfeh 1 9 7 2 ~ )  for arbitrary values of the surface tension and the density 
ratio (see 3 4). In 5 5 we investigate whether the second harmonic resonance case, 
in which the fundamental and its second harmonic have the same linear phase 
velocity, leads to instability. 

Maslowe & Kelly (1970) analysed, to second order, finite amplitude periodic 
surface waves for the case of zero surface tension. Their results do not exhibit the 
dependence of the wave velocity on the amplitude except near the linear neutrally 
stable wavenumber. A second purpose of the present paper is to use the method 
of multiple scales to analyse, to third order, the nonlinear motion for an arbitrary 
surface tension, and for waves whose frequency, wavenumber, amplitude and 
phase are slowly varying functions of both position and time (see 5 3). 

2. Problem formulation 
We consider a system consisting of two semi-infinite inviscid incompres- 

sible fluids moving with uniform velocities U, and U, as shown in figure 1. We 
assume the initial motion to be irrotational so that the subsequent motion 
of the fluids is irrotational and, consequently, can be represented by potential 
functions. 

A Cartesian co-ordinate system is introduced such that the x axis lies in the 
undisturbed interface while the y axis is normal to this interface and directed 
from fluid 1 to fluid 2 as shown in figure 1. Distances and time are made dimension- 
less using 1 and ( l / g ) g ,  where 1 is a characteristic length which will be specified 
later and g is the body force per unit mass, which is assumed to be directed 
towards fluid 1. 
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We introduce dimensionless potential functions $i(x, y, t )  describing the 
perturbed motion defined by 

$; = (g13)-5a [ u p  + $&, Y, 01, (2.1) 

ui = L $ ( Z g ) d .  (2 .2)  

V2$, = 0, -a2 < y < 7, (2.3) 

V2$, = 0, 7 < y < co, (2.4) 

where the $; are the potential functions describing the total motion of the 
fluids and 

Since the fluids are incompressible and the motion is irrotational 

where q(x, t )  is the elevation of the interface above its undisturbed position. 

Away from the interface the perturbed motion vanishes, that is, 
Equations (2.3) and (2.4) must be supplemented by boundary conditions. 

lgrad$,I+O as y-f-co, (2.5) 

Igrad$,I+O as y+co. (2.6) 

At the interface, the kinematic condition that every particle on the interface 
remains on the interface leads to the two boundary conditions 

7t+uj7x+$ix7x = $33 at Y = 7. 
The balance of normal forces gives 

$lt+U.1$lx+~($21x+$21y)+(1-P)7 = P [ $ z t + U . 2 $ 2 x + ~ ( $ ~ x + $ ~ y ) I  

+ “~~I.)217xx(l +7:)-$ a t  Y = 7, (2.8) 

hI. = ( p , g / T ) + ,  P = P2/P1, (2.9) 

where p1 and p2 are the densities of the two fluids and 

T being the surface tension. 

be done later. 
The problem is completed by a specification of the initial conditions. This will 

3. Nonlinear dispersive waves 
We now consider the propagation of a weak nonlinear wave whose wave- 

number, frequency, amplitude and phase are slowly varying functions of both 
space and time. In  this case, we let 1 = l/h$ so that the coefficient of the last term 
in (2.8) becomes unity. Following Nayfeh & Hassan (1971), we assumeexpansions 

of the form 3 

?(z7 t ,  = En7n(8> x27 T2) + 0(E4)9 (3.1) 

( 3 4  

n= 1 

3 

n= 1 
$j(X, Y, t )  = x w$n(R x2, T2, Y) + 0(E4)1 

where the dimensionless parameter E is of the order of the maximum steepness 
ratio of the wave. We assume that E is small but finite, so that 

X ,  = E ~ X ,  T, = s2t (3.3) 
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are slow position and time scales, and that 8 is a rapidly rotating phase such that 

0, = k(X,, T,) (wavenumber), (3.4) 

6, = - w(X,, T,) (frequency). (3.5) 

If k and w are constants 13 = kx-wt .  If 8 is twice continuously differentiable, 
then (3.4) and (3.5) yield the compatibility relationship 

akpG + aupx, = 0, (3.6) 

or aklaT, + w' ak/aX, = 0, (3.7) 

where w' = dwldk, the group velocity. Equations (3.6) and (3.7) are statements of 
the conservation of waves. 

In terms of the new variables X,, T, and 0 the position and time derivatives 

a a a - = Ic-+$- 
ax ae ax,) 

are given by 

(3.10) 

The vertical scales Yl = ey  and Yz = s2y have been ignored since our concern is 
not in obtaining an accurate representation of the far-field flow, but rather in 
obtaining the behaviour of the interface transposed to y = 0. In this case, as in 
thin airfoil problems (cf. Van Dyke 1964), the representation is correct a t  y = 0 
and sufficiently accurate for y < l/e. This is within the displacement of the wave. 

By substituting the expansions (3.1) and (3.2) into (2.3)-(2.8), using (3.8)- 
(3.10) and equating coefficients of like powers of s, we find that each q51m satisfies 
(2.5), while each q52m satisfies (2.6)) and obtain equations describing qm and q5jm. 
These equations are given in the appendix. 

The solution of the first-order problem is taken to be 

q1 = A(X , ,  T,) eiB +B(X , ,  T,) e-is, (3.11) 

q511 = i(u, - w / k )  [A(X, ,  T,) eie -B(X, ,  T,) e - q  ekg, (3.12) 

(3.13) 

where a bar denotes a complex conjugate and w and k satisfy the dispersion 

q521 = - i(u, - w / k )  [A(X , ,  T,) eis -B(X,, T,) e--kg, 

( 1 - p ) k  p(u1-u2)2k2 relation 
0 s -  (3.14) 

The interface of the two fluids is stable or unstable according to whether w is 
real or complex. Thus the flow is stable when 

(3.15) 

and neutrally stable at k = 0 and when the inequality of (3.15) is replaced by an 
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equality. This is the usual result of linear stability theory (cf. Chandrasekhar 
1961, $ 101). In  this section, we assume that (3.15) is true so that, if w ,  k, and A 
are constants, (3.11) represents a uniform travelling wave train. In  $ 4, we deter- 
mine expansions valid for wavenumbers near the neutrally stable wavenumbers. 

The solution of the second-order problem is then 

2 -  - 4 4 2  e2ie + B2 e-2ie) 

q512 = i(ul - w / k )  (A- k) (A2 e2ie - B2 e-2ie) e Z k y ,  

$22 = - i(u, - w / k )  (A + k) (A2 e2ie - A2 e--2ie) e-2ky,  

(3.16) 

(3.17) 

(3.18) 

where - P A  A = k2 
zk(puz,+pp;)-(l-p)-44k2 

and pn = u, -w /k .  

Note that A and hence q2, and q522 become singular when 

4k2-2k(p21+p;)+l-p = 0. 

Since k2-k(p;+pp;)+1-p = 0 

from (3.14), (3.20) is satisfied when 

(3.19) 

(3.20) 

L 2  = *(1-p). (3.21) 

At this critical wavenumber, the fundamental and its second harmonic move 
with the same linear phase speed. Hence this critical wavenumber is the second- 
harmonic resonance wavenumber. Note that it is independent of the fluid 
velocities u1 and u2. An expansion valid near this resonant wavenumber is 
presented in $5. 

Substituting the first- and second-order solutions into (A 7)-(A 9) (see 
appendix), we obtain 

+CC+NST for y = 0,j = 1,2,  

a 
ax, +u - ( p 2 A ) ]  eie+CC+NST for y = 0, 

(3.22) 

(3.23) 

(3.24) 
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where CC represents the complex conjugate and N S T  represents terms that do 
not produce secular terms. The particular solution of (3.22)-(3.24) contains 
secular terms of the form Bexp (iB) which make r3 unbounded as B - t c o .  The 
condition for the elimination of the secular terms can be found by requiring the 
inhomogeneous terms in (3.22)-(3.24) to be orthogonal to the solution of the 
adjoint homogeneous problem. This condition leads to the following equation: 

where 

Using the dispersion relationship (3.14), we can rewrite (3.25) as 

aA aA ak 

aT, ax, 8x2 
2 - + 2 ~ '  - + w"A - = 8iJA'B. 

(3.26) 

(3.27) 

This equation has the same form as those obtained by Nayfeh & Hassan (1971) 
for (i) waves on the interface of a subsonic gas and a liquid of finite depth, 
(ii) waves on the surface of a circular column of liquid and (iii) waves in a hot 
electron plasma. 

By putting A = iaexp (ip), with a and /3 real, in (3.27) and separating real and 
imaginary parts, we obtain 

aa2 a 
- +- (wta2)  = 0,  
aT, ax, (3.28) 

(3.29) 

The surface elevation (3.1) can hence be written as 

r = ea cos (8  + p) + ie2a2A cos 2(B + p) + 0 ( e 3 ) .  (3.30) 

Equations (3.7) and (3.14) show that w and k are constant along the straightline 

dX21dT2 = w'(k) .  (3.31) characteristics 

Along these characteristics (3.28) and (3.29) can be written as 

(3.32) 

which can be used to compute a2 and p. 
For constant w and k, (3.28) and (3.29) can be solved to obtain 

C C ~  = fi(X2 - w'T,), 

p = - 7 ( X ,  + w'T,)fdX, - wtT,) + f , ( X ,  - a'%), 

(3.33) 

(3.34) 
1 J  
2 w  
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where f ,  and f 2  are determined from the initial conditions. In addition, if a and /3 
are independent of position (3.28) and (3.29) give 

a = constant, p = Ja2T2+Po. 
Hence (3.30) becomes 

(3.35) 

7 = sa cos (kx - wt + J8a2t +Po)  
+&2a2Acos2(kx-wt+ J@a2t+PO) +O(e3) (3.36) 

and the phase speed c is given by 

c = w/k  - ( J / k )  &b2. (3.37) 

This shows that the phase speed is amplitude dependent, and hence extends the 
results of Maslowe & Kelly (1970). 

Equations (3.28) and (3.29) are valid only when the wave bandwidth 
6k'/k' = O(e2).  To determine an expansion valid when 6k'llc' = Ole), we follow 
Benney & Newell (1967) and Stewartson & Stuart (1971) by introducing a frame 
of reference moving with the group velocity w' and introducing the slow scales 

T2 = s2t, 5 = ~ ( x - w ' f ) .  (3.38) 

After carrying out the expansion, whose details we shall omit, we arrive at  the . -  - 

a2A 
2 ~ ~ ' ' -  = 4iJA2B,  

aA following equation: 
--I' 
aT2 at? 

(3.39) 

where w'' is evaluated at k,, the centre of the wave group. This equation is similar 
to those obtained and discussed by Benney & Newell (1967), Taniuti & Washimi 
(1968), Watanabe (1969), Stewartson & Stuart (1971), Kadomtsev & Karpman 
(1971), DiPrima, Eckhaus & Segel (1971) and Davey (1972). 

Equation (3.39) can be derived using the following short and compact 
procedure. Using the method of harmonic balance, or any other convenient 
procedure, we determine the nonlinear dispersion relationship 

(3.40) 

for travelling waves of the form 7 = aexp { i ( k x -  wt)},  where a, k and w are 
constant. Here, Q ( k )  is the right-hand side of (3.14), and J ( k )  is given by (3.26). 
Next, we convert this dispersion relationship into an equivalent linear partial 
differential equation by replacing 7c and w by -ia/ax and ialaw, respectively. 
Thus, we convert (3.40) into 

= Q(k)  - J fk )  ~~a~ 

[i i- 0 (- ig) + s2J (-ig) 7 ?j] 7 = 0. (3.41) 

To determine an expansion for slowly varying wave trains, we apply the 
method of multiple scales directly to this simple equation rather than to the 
original equations (2.3)-(2.8). To accomplish this, we introduce the slow scales 
X, = p x  and TI = pt and the rapidly rotating phase 8 = k,x - Wet, where k, is the 
centre of the wave packet and w, = O(ko).  Moreover, we assume that the packet 
bandwidth 6k'/kA = O(p)  O(s2). 

7 = 4x1, T,) exp (i@ (3.42) We assume that 
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(3.43) 
aA aA a2A 

ipQ'(k ) - + &p2Q"(ko) 7 + 4s2J(k,) A2B = 0. 
O ax, ax, 

If ,u = O ( E ~ ) ,  (3.43) reduces to (3.27) if k = k, = constant. However, if ,u = O(s), 
we introduce a reference frame moving with the group velocity Q'(k,) and intro- 
duce the scales T, = ST, and ,$ = X,-  Q'(k,)T, in (3.43) and arrive at  (3.39). This 
procedure bears some resemblance to those reviewed by Kadomstev & Karpman 
(1971) and to those of Benney & Newel1 (1967) and Davey (1972). 

4. Expansion near the neutrally stable wavenumber 
We now determine an expansion valid for wavenumbers near the neutrally 

stable wavenumbers. In this case we let 1 = l/k', where k' is the wavenumber of 
an initial sinusoidal disturbance. The ratio l/lkL appearing in (2.8) becomes 

l/lkE = Ic'/kA = k ,  (4.1) 

where k is a dimensionless wavenumber. From (3.15)) the dimensionless neutrally 
stable wavenumbers are given by 

X kc = - 

where x = PW1- UdZ rcl.ls. (4.3) 

(ul - U2l4 < WW1 +p2Y (pl -P~)/PM, 
When p < 1, complete stability is obtained if x2 < 4( 1 + P ) ~  (1  -p )  or 

in dimensional quantities (cf. Chandrasekhar 1961, chap. XI). If this condition 
is not satisfied, two neutrally stable wavenumbers exist for p < 1. The large one 
is denoted by k ,  and is due to surface tension stabilization, while the small one is 
denoted by k, and is due togravity stabilization. All wavenumbers between k ,  and 
k ,  are unstable whereas those outside thisrange are stable. In  the case wherep > 1, 
only the neutrally stable wavenumber k ,  exists because gravity is destabilizing. 

The critical condition (3.15) is a function of the wavenumber, velocity differ- 
ence and density ratio. Instead of solving (3.15) to determine a neutrally stable 
wavenumber as a function of the other variables, one can solve for a critical 
velocity difference or a critical density ratio. Drazin (1970) analysed the non- 
linear stability of the system for the special cases: (i) p = 1 and T + 0 near the 
critical velocity difference, and (ii) p + 1 and T = 0 near the critical 

c = (1 -P ) l ( l +P) .  
Maslowe & Kelly (1970) investigated the existence of periodic finite amplitude 
waves for the case T = 0 near the critical wavenumber. In  this paper, we deter- 
mine the behaviour of the system for the general case p + 1 and T + 1 near the 
critical wavenumber by letting 

where 

k = kc+€%, (4.4) 

= O( 1) is a detuning parameter. 
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3 

n = l  
$j = E cn$jn(Xo) X I ,  X2,  To, TI, T27 Y) + O(e4), (4.6) 

where T, = e"t, Xn = Px. 

We substitute these expansions into (2 .3 ) - (2 .8 ) )  equate coefficients of like powers 
of e and obtain equations for and y,, where n = 1, 2, 3.  These equations are 
slightly different from those in the appendix; hence we shall not present them here. 

The first-order solution in this case is given by 

T,I, = A(X,, X,, T,, T,) eie +B(X,, X,, T,, T,) e-ie, 

$,, = ip,u(Aeie - Be-ie) eu, 

$ 21 - - ip(u(Aei0 - Ae-ie) e-u, 

(4.7) 

(4.8) 

(4.9) 

where a bar denotes complex conjugate and 

u1- u2 
) p=-. u1+ PU2 c = ~ 8 = XO-CTO, 

l + P  1 + P  
(4.10) 

Note that ui = iiik$, where ii, = U,(g/kL)-*. 
With the first-order solution known, the particular solution of the second-order 

problem will contain secular terms which make ~ 2 / ~ 1  unbounded as To or X ,  -+ co 
unless aA/aX,  = 0. With the secular terms eliminated, the solution of the 

second-order problem is r2 = A A ~  e2ie + cc (4.11) 

r,512 = - ipp( 1 - A) A2 e2ie e2v + (aA/BT,) eie ev + CC, (4.12) 

922 = ip( 1 +A) A2 e2ie e-2Y - (BA/aT,) eU e-v + CC, (4.13) 

where A = -p(l-p)~2/(l-p-2k,2). (4.14) 

Using the first- and second-order solutions, we find that the condition which 
must be satisfied for there to be no secular terms in the third-order problem is 

where (4.16) 

The nonlinear Schrijdinger equation (4.15) is similar in form to that obtained by 
Stewartson & Stuart (1971), DiPrima et al. (1971) and Davey (1972) if we inter- 
change the X ,  and T, derivatives. 

On putting A = Qaexp (ip), with a and /3 real, in (4.15) and separating real 
and imaginary parts, we have 

(4.18) 
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There is no general solution known for (4.17) and (4.18). However, for a constant 
phase, (4.18) gives a = a(Tl,T2) and (4.17) becomes 

where 

(a2 - a2) a, 
a2a r - =-- 
aT: l + p  

Equation (4.19) may be integrated to give 

(4.19) 

(4.20) 

(4.21) 

where F is a constant determined from the initial conditions. 
The behaviour of the solutions of (4.21) can be best visualized using the phase 

plane diagrams shown in figures 2 (a)  and ( b )  for positive and negative r, respec- 
tively. For I' > 0, figure 2 (a )  shows that the motion is bounded and hence stable 
if F < F, = ra4/2(l +p)  and the trajectories intersect the aa/aT1 axis. In  this 
case, the trajectories are closed and the motion is periodic. For the special initial 

(4.22) 
conditions 

~ ( x ,  t )  = e,  @(x, t)/at = 0 at x = ct, 

which correspond to 
a(0) = 1, aa(0)/aTl = 0, (4.23) 

figure 2 (a)  shows that the motion is bounded or unbounded according to whether 
a2 is greater or less than unity. Hence, the special value a2 = 1, or 

(4.24) 

separates stability from instability. Combining (4.24) with (4.4), we get the 
following neutrally stable wavenumber: 

T- 

(4.25) 

Since 2kc- x/( 1 +p)  is positive a t  k ,  and negative at k, according to (4.2), the 
nonlinear motion increases the range of unstable modes; hence, it is destabilizing. 

For I' < 0, figure 2 (b )  shows that every motion is bounded. If F + 0,  every 
motion is represented by a closed trajectory and hence is periodic. If F = 0, the 
motion, which is represented by the separatrix of figure 2 (b) ,  tends to the origin 
as time increases. Therefore, if I' < 0 the unstable linear modes correspond to 
finite amplitude bounded motions and, hence, the nonlinear motion is stable. 

If p -+ 0 while x is kept fixed, I' becomes 

(4.26) 

in agreement with the result of Nayfeh & Saric (1971). In this case there are two 
critical wavenumbers according to (4.2), and I?@,) > 0 while r ( k , )  < 0 for 
x > 3/24 and I'(k,) > 0 for x < 3/24. Thus the nonlinear motion is destabilizing. 
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FIGURE 2. Phase plane for (a) I’ > 0 and ( 6 )  I’ < 0. 

As p+ 1, r+glc,z-tlccx = --I- 3 2 x  a o (4.27) 

and, in this case, the nonlinear motion is stable. This result is qualitatively in 
agreement with that obtained by Drazin. Our result, however, disagrees quanti- 
tatively with Drazin’s result (specifically his equation (4l), which also has 
a misprint) because he used infinite length and zero velocity scales. 

If we let T = 0, and use the notation and dimensionless variables of Drazin, 

Palat2 + “(a - ac) + &a,”( 1 + 6 2 )  a21 u = 0, (4.28) 
(4.19) becomes 

where g replaces 8, the density parameter of Drazin. The nonlinear part of this 
equation is the same as that obtained by Drazin, while the linear part is different 
from his because he perturbed about the critical g value &,while we perturbed 
about the critical wavenumber Ic,, which is due to gravity stabilization in this case. 

21 F L M  55 
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If we let a be a constant and ,!? = P(T,) in (4.21), we get an expression for the 
perturbed frequency of a finite amplitude periodic wave. This frequency come- 
sponds to that obtained by Maslowe & Kelly. 

To illustrate the transition from instability near p = 0 to stability near p = 1, 
we show the variation of I' with x and p in figures 3 (a)  and (b ) .  For p 2 0-15, 
I?(kT) > 0 for all values of x and the nonlinear motion is destabilizing. When 
0.15 2 p 2 047,  l?(kT) is positive except a t  intermediate values of x. As x-fco, 
k,+O and l%T-tX/(I + p ) ,  and hence 

W,) -+ 0 (4.29 u) 

and (4 .293)  

I f  p 2 0.1716, (4.29 b )  shows that r(k,) is negative, and the nonlinear motion is 
stable as a consequence. 

For small x the situation is different because l?(k,) and P(k,) are initially 
positive. To determine whether the nonlinear effects are stabilizing or destablizing 
near the minimum values of I', we note that 

(4.30) 

and r = $(I  - p )  [(I -p)2/(1 +p)2--2- 161' (4.31) 

Equation (4.31) indicates that I? is initially negative forp 0-283.  Asxincreases, 
I?(&) remains negative but I'(k,) becomes positive for some x and returns to 
a negative value for x > x2 = (z)$yc, corresponding to the second-harmonic 
resonant wavenumber f .  

Although it appears that the nonlinear motion is destabilizinq for wavenumbers 
near f ,  it  is in fact stable, as is shown in the next section. The present expansion 
is not valid near f because I? is singular at &. 

5. Second-harmonic resonance case 
In  this section, we determine an expansion valid near the second-harmonic 

resonant wavenumber 4. To accomplish this, we re-introduce the dimensionless 
variables of 4 3 and use the scales 

To = t, !Pl = E t ,  xo = X, x, = E X .  (5.1) 

(5 .2)  

(5.3) 

Moreover, we assume expansions of the form 

T+, t )  = q,(X,, x,, To, Tl) + E272(X,, XI, To, TI) + * * * Y 

$j(X, Y, $1 = EQjAXO, x,, To, Tl, Y )  

+ ~'$jjZ(Xo, X i ,  To, Ti, y )  + * - - (j = 1,2)- 

Substituting (5.1)-(5.3) into (2.1)-(2.8) and equating coefficients of like powers 
of E ,  we obtain problems for the determination of 7, and $mn. The problems are 
slightly different from those in the appendix, and hence we shall not present 
them here. 
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I n  this case, the first-order solution is taken to contain two harmonics 

(5.4) 
(5.5 a)  

where k, = [$( 1 -p )p  + O(E), k, = 21c, + O(E), (5.6) 

8, = I c l X o - ~ ~ T o ,  8, = k2Xo-w2T0 (5-7) 

corresponding to 
ql = A,(X,, T') eiel + A,(X,, TI) eiea + CC, 

#,, = i(u,- w 1 / k , ) A , e ~ ~ ~ e k ~ ~ + i ( u , - w , / k 2 ) A , e ~ e ~ e ~ ~ ~ +  CC, 
#,, = - i ( u , - w , / ~ , ) A , e ~ ~ ~ e - k ~ ~ - i ( u , - ~ 2 / ~ , ) A , e ~ ~ ~ e - ~ ~ ~ + C C ,  (5.5 b )  

and w1 = w(k,) and w2 = w(k, )  from (3.14). These particular values of Ic give 
w, = 2w1+O(s) .  Therefore, 

where d is a detuning function which can be written as 
2 4  = e, - qx,, TJ, (5 .8 )  

(5.9) 
k,- 2k w2 - 2w 

d(X1,  TI) = - 1X, - ~ IT,. 
E 8 

By substituting (5.4)-(5.6) in the second-order problem, we obtain inhomo- 
geneous equations and boundary conditions for the determination of q,, qi12 
and #22. The particular solution of the resultin? second-order problem contains 
secular terms which make q2/ql unbounded as 8, and O,+co. By requiring the 
inhomogeneous part of this problem be orthogonal to  the solution of the adjoint 
homogeneous problem, we obtain equations for A,(X,, TI). Letting 

A ,  = anexpip, 

with a, and p, real, we can write the surface elevation as 

= E C G ~  COS ( k , ~  - + /I;) + E U ~  cos (kzx - w2t + pz) + O(e2),  (5.10) 

aa, I aa - aa - 
- + w l L  = - J a1 a2 sin a, 3 + w f  2 = +Jo$ sin a, 
aT, ax, aT, 

where (5.11) 

(5.12) 

and 

Here w; and w; are the group velocities of the two modes of oscillation. If 
p = u, = 0 and k ,  = 2k, = 2k,, (5.11)-(5.13) reduce to the equations of Simmons 
(1969) and McGoldrick (1970) and have the same form as those obtained by 
Nayfeh (19726). 

Since there is no general solution available for (5.11) and (5.12) for general 
initial conditions, we investigate the temporal variation of the amplitudes and 
phases, following Simmons (1969), McGoldrick (1970) and Nayfeh (19726). Thus, 
we let aan/aXl = ap,,/aX, = 0 and k ,  = 2k1. With these assumptions, (5.11) and 

(5.14) 
(5.12) have the integrals a;+ 2aE = E,  

l w  - 2 w  

J s  
a2,U2cosa-~-,1 a, 2 = L, (5.15) 

where E and L are constants. Equation (5.14) is a statement of the conservation 
of energy and shows that the motion is completely bounded. 
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If we consider spatial variations instead of temporal variations, the integrals 
of (5.11)aiid(5.12)area~+2w~a~/w~ = ~ a n d a ~ u , c o s a -  (w2-2w,)wkai / (d)  = 5. 
If w; and wk are positive, the treatment in this case follows that of the temporal 
variation case. 

Letting (5.16) 

and using (5.14) and (5.15), we rewrite (5.11) as 

5 = 4l-E = ‘53 - (‘53 - 5 2 )  sin2 {dt - ti) J[+E(‘53 - &,)I+ “53 - E 2 m - 3  - tl)I% (5.18) 

where g, is a root of the cubic function on the right-hand side of (5.17), 
t3 > E2 > 6, and t, is the initial time. This general solution corresponds to both 
amplitude- and phase-modulated waves (i.e. aperiodic waves). 

For pure amplitude-modulated waves (i.e. p, = p2 = constant), (5.12) and 
(5.13) demand that w2 = 2w, and cos 01. = 0, or a = &(2n - 1) n. This corresponds 
to perfect resonance with k ,  = [&( 1 --p)]$. The solution of (5.1 1)  in this case is 

a, = (E)+ sech [ f (4E)t €It + constant], (5.19) 

a2 = (&E)Btanh [ & (+E)$&+ constant]. (5.20) 

Therefore, as t -+ 00, a, -+ 0 while a2 -+ (&I#)*. Thus, the steady-state motion 
consists of a periodic wave independent of the fundamental. 

For pure phase-modulated waves (i.e. periodic waves), aaj/aTl = 0 and hence 

sina = 0, a = nrr. (5.21) 

On eliminating /3, and p2 from (5.12) and (5.13) and using aa/aT, = 0, we obtain 

(5.22) 

In  this case, 
p, = eJa2 cos nrrt + constant, 

p2 = 2/3, + (w2 - 2w,) t + constant, 

and the phase speed is given by 

c = q / k ,  - e(J/k,)  u2 cos nn. (5.23) 

Thus pure phase-modulated waves are possible near resonance and the non- 
linearity adjusts the phases to yield perfect resonance. 

At certain flow conditions, w; is negative while w; is positive, which might 
ead to spatial instability (Nayfeh 1972b). 

This work was supported by the United States Atomic Energy Commission 
and the Fluid Dynamics Program of the Office of Naval Research. 
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Order E 

(A 21 
a7 k ( u i - w / k ) - ' - L 1  ae ay = O for y = 0,  j = 1,2,  

a411 8% 8421 
ae a82 ae k(u1- @/k) - + (1 -p)ql = k2 2 + kp(u, - wfk) - for y = 0. (A 3) 

Order e2 

a+. a 
k ( ~ j - ~ / k ) - - -  872 ae a 4 3 2  ay = -k2-  ae j1 - ae " + q l 3  for y = 0, j = 1,2.  (A5)  

2 

i = l  
2 ( k(Ui - w / k )  $g + (1  -p )7 ,  
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